Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7962): 724-729, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138081

RESUMO

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

2.
Opt Lett ; 48(5): 1204-1207, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857249

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has enabled single nanoparticle Raman sensing with abundant applications in analytical chemistry, biomaterials, and environmental monitoring. Genuine single particle Raman sensing requires a cumbersome technique, such as atomic force microscopy (AFM) based tip-enhanced Raman spectroscopy; SERS-based single particle Raman sensing still collects an ensemble signal that samples, in principle, a number of particles. Here, we develop in situ Raman-coupled optical tweezers, based on a hybrid nanostructure consisting of a single bowtie aperture surrounded by bull's eye rings, to trap and excite a rhodamine-6G-dye-doped polystyrene sphere. We simulated a platform to ensure sufficient enhancement capability for both optical trapping and SERS of a single nanoparticle. Experiments with well-designed controls clearly attribute the Raman signal origin to a single 15-nm particle trapped at the center of a nanohole, and they also clarified the trapping and Raman enhancement role of the bull's eye rings. We claim Raman sensing of a smallest optically trapped particle.

3.
Nano Lett ; 22(6): 2374-2380, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285643

RESUMO

In situ refractive index sensors integrated with nanoaperture-based optical tweezers possess stable and sensitive responsivity to single nanoparticles. In most existing works, detection events are only identified using the total light intensity with directivity information ignored, leading to a low signal-to-noise ratio. Here, we propose to detect an optically trapped 20 nm silica particle by monitoring directivity of a plasmonic antenna. The main and secondary radiation lobes of the antenna reverse upon trapping because the particle-induced perturbation negates the relative phase between two antenna elements, leading to a significant change of the antenna front-to-back ratio. As a result, we obtain a signal-to-noise ratio of 20, with an order-of-magnitude improvement as compared to the intensity-only detection scheme.


Assuntos
Nanopartículas , Refratometria , Luz , Pinças Ópticas
4.
Nanotechnology ; 33(4)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34530419

RESUMO

Fiber optical tweezers benefit from compact structures and compatibility with fiber optic technology, however, trapping of nano-objects are rarely demonstrated. Here, we predict stable optical trapping of a 30 nm polystyrene particle using an all-dielectric coaxial optical fiber supporting an axisymmetric TEM-like mode. We demonstrate, via comprehensive finite-difference time-domain simulations, that the trapping behavior arises from a significant shift of the fiber-end-fire radiation directivity originated from the nanoparticle-induced symmetry breaking, rather than the gradient force which assumes an invariant optical field. Fabrication of the fiber involved is entirely feasible with existing techniques, such as thermal-drawn and electrospinning, and therefore can be mass-produced.

5.
Front Optoelectron ; 14(4): 399-406, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36637761

RESUMO

Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...